Search results

Search for "organic electrochemistry" in Full Text gives 11 result(s) in Beilstein Journal of Organic Chemistry.

1-Butyl-3-methylimidazolium tetrafluoroborate as suitable solvent for BF3: the case of alkyne hydration. Chemistry vs electrochemistry

  • Marta David,
  • Elisa Galli,
  • Richard C. D. Brown,
  • Marta Feroci,
  • Fabrizio Vetica and
  • Martina Bortolami

Beilstein J. Org. Chem. 2023, 19, 1966–1981, doi:10.3762/bjoc.19.147

Graphical Abstract
  • [90][91]. Due to their wide electrochemical window, imidazolium ILs are commonly used in organic electrochemistry, simultaneously as solvents and supporting electrolytes [92][93][94]. In addition, the cathodic reduction (both in batch [95] and in flow [96]) can be exploited for the generation of N
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
  • by a single catalyst entity [18][19][20][21]. 1.2 Photoelectrochemistry (PEC) Another important vehicle for SET is synthetic organic electrochemistry (SOE) [22][23]. While undoubtedly powerful, electrochemistry can suffer limitations in reaction selectivity because the constant application of high
PDF
Album
Review
Published 28 Jul 2023

Molecular and macromolecular electrochemistry: synthesis, mechanism, and redox properties

  • Shinsuke Inagi and
  • Mahito Atobe

Beilstein J. Org. Chem. 2022, 18, 1505–1506, doi:10.3762/bjoc.18.158

Graphical Abstract
  • /bjoc.18.158 Keywords: electron transfer; electrosynthesis; organic electrochemistry; redox-active materials; Electrochemistry is now a powerful tool in organic chemistry not only for analyzing the electron transfer behavior of organic molecules and macromolecules, but also for driving organic
  • of organic electrochemistry for energy material applications. Organic semiconductor design for electron or hole transport is important for transistor and solar cell applications, and redox-active (but stable) organic and polymeric materials are promising for secondary batteries and redox flow
PDF
Editorial
Published 26 Oct 2022

First example of organocatalysis by cathodic N-heterocyclic carbene generation and accumulation using a divided electrochemical flow cell

  • Daniele Rocco,
  • Ana A. Folgueiras-Amador,
  • Richard C. D. Brown and
  • Marta Feroci

Beilstein J. Org. Chem. 2022, 18, 979–990, doi:10.3762/bjoc.18.98

Graphical Abstract
  • at the cathode is usually H2 evolution [29]. The use of divided cells is less common in organic electrosynthesis, mainly due to complications inherent with membranes. Useful cathodic processes are less exploited in organic electrochemistry. In the context of NHC organocatalysis in flow
PDF
Album
Full Research Paper
Published 05 Aug 2022

Electrocatalytic C(sp3)–H/C(sp)–H cross-coupling in continuous flow through TEMPO/copper relay catalysis

  • Bin Guo and
  • Hai-Chao Xu

Beilstein J. Org. Chem. 2021, 17, 2650–2656, doi:10.3762/bjoc.17.178

Graphical Abstract
  • temperatures [3][4][5], prompting the development of mild conditions by merging photoredox catalysis with copper catalysis (Scheme 1B) [8][9]. Notwithstanding of these outstanding achievements, noble metal-based catalysts and chemical oxidants are employed under these photochemical conditions. Organic
  • electrochemistry is an ideal tool for promoting dehydrogenative cross-coupling reactions as no external chemical oxidants are needed [11][12][13][14][15][16][17][18][19]. In this context, Mei and co-workers have reported an elegant TEMPO/[L*Cu] co-catalyzed asymmetric electrochemical dehydrogenative cross-coupling
PDF
Album
Supp Info
Letter
Published 28 Oct 2021

A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions

  • Munmun Ghosh,
  • Valmik S. Shinde and
  • Magnus Rueping

Beilstein J. Org. Chem. 2019, 15, 2710–2746, doi:10.3762/bjoc.15.264

Graphical Abstract
  • chemistry. In this review, we aim to focus on methods for achieving stereocontrol in synthetic organic electrochemistry via a systematic description of the reported literature on chiral inductors, followed by their applications in the synthesis of natural products and bioactive compounds including late
PDF
Album
Review
Published 13 Nov 2019

A diastereoselective approach to axially chiral biaryls via electrochemically enabled cyclization cascade

  • Hong Yan,
  • Zhong-Yi Mao,
  • Zhong-Wei Hou,
  • Jinshuai Song and
  • Hai-Chao Xu

Beilstein J. Org. Chem. 2019, 15, 795–800, doi:10.3762/bjoc.15.76

Graphical Abstract
  • -centered radicals (NCRs) are attractive reactive intermediates for organic synthesis as they provide opportunities for the efficient construction of C–N bonds [15][16][17][18][19]. Recently, the generation of NCRs through electron transfer-based methods has been attracting attention. Organic
  • electrochemistry is a powerful tool for adding or taking electrons from organic molecules to promote redox reactions because of its reagent-free feature and the tunability of electric current and potential [20][21][22][23][24][25][26][27][28][29][30]. We [31][32][33][34] and others [35][36][37][38][39][40][41
PDF
Album
Supp Info
Letter
Published 28 Mar 2019

Photovoltaic-driven organic electrosynthesis and efforts toward more sustainable oxidation reactions

  • Bichlien H. Nguyen,
  • Robert J. Perkins,
  • Jake A. Smith and
  • Kevin D. Moeller

Beilstein J. Org. Chem. 2015, 11, 280–287, doi:10.3762/bjoc.11.32

Graphical Abstract
  • . Keywords: electrochemistry; sustainable oxidation reactions; visible light; Introduction Organic electrochemistry is an extremely versatile tool for conducting a wide variety of chemical reactions [1][2][3]. This versatility stems from both the gentle, acid/base neutral reaction conditions employed for
PDF
Album
Commentary
Published 23 Feb 2015

Electrochemical selenium- and iodonium-initiated cyclisation of hydroxy-functionalised 1,4-dienes

  • Philipp Röse,
  • Steffen Emge,
  • Jun-ichi Yoshida and
  • Gerhard Hilt

Beilstein J. Org. Chem. 2015, 11, 174–183, doi:10.3762/bjoc.11.18

Graphical Abstract
  • seems to be a powerful tool for the transformation of those 1,4-dienols. Although it seems that all possible functional groups have been investigated in organic electrochemistry, reports on electrochemical transformations of 1,4-dienes are rare [14][15][16][17]. First attempts of a direct
PDF
Album
Supp Info
Full Research Paper
Published 28 Jan 2015

Recent advances in the electrochemical construction of heterocycles

  • Robert Francke

Beilstein J. Org. Chem. 2014, 10, 2858–2873, doi:10.3762/bjoc.10.303

Graphical Abstract
  • reactions is presented and discussed in this review. Keywords: anodic cyclization; electrosynthesis; heterocycle; olefin coupling; organic electrochemistry; radical cyclization; Introduction The construction of heterocyclic cores undoubtedly represents a highly important discipline of organic synthesis
PDF
Album
Review
Published 03 Dec 2014

Prediction of reduction potentials from calculated electron affinities for metal-salen compounds

  • Sarah B. Bateni,
  • Kellie R. England,
  • Anthony T. Galatti,
  • Handeep Kaur,
  • Victor A. Mendiola,
  • Alexander R. Mitchell,
  • Michael H. Vu,
  • Benjamin F. Gherman and
  • James A. Miranda

Beilstein J. Org. Chem. 2009, 5, No. 82, doi:10.3762/bjoc.5.82

Graphical Abstract
  • could be used to predict the reduction potentials of a variety of metal-salen compounds, an important class of coordination compounds used in synthetic organic electrochemistry as electrocatalysts. Keywords: density functional theory; electron affinity; metal-salen; reduction potential; Introduction
PDF
Album
Preliminary Communication
Published 23 Dec 2009
Other Beilstein-Institut Open Science Activities